E-Mail
The movement of electrons can have a significantly greater influence on spintronic effects than previously assumed. This discovery was made by an international team of researchers led by physicists from the Martin Luther University Halle-Wittenberg (MLU). Until now, a calculation of these effects took, above all, the spin of electrons into consideration. The study was published in the journal Physical Review Research and offers a new approach in developing spintronic components.
Many technical devices are based on conventional semiconductor electronics. Charge currents are used to store and process information in these components. However, this electric current generates heat and energy is lost. To get around this problem, spintronics uses a fundamental property of electrons known as spin. This is an intrinsic angular momentum, which can be imagined as a rotational movement of the electron around its own axis, explains Dr Annika Johansson, a physicist at MLU. The spin
E-Mail
Tsukuba, Japan - Ceramic materials that are resistant to cracking are used in a variety of industries from aerospace engineering to dentistry. Toughening them to improve their efficiency and safety is therefore an important area of investigation. Researchers from the University of Tsukuba have used time-resolved X-ray diffraction to observe transformation toughening in zirconia ceramics during dynamic fracture. Their findings are published in
Applied Physics Letters.
Current methods of observation allow the formation of cracks in materials to be observed in situ while loads are applied. These close-up analyses can capture changes on a very small scale with fast resolution, providing clear pictures of fractures and of how the material resists them through toughening.
PSI researchers have developed a new tomography method with which they can measure chemical properties inside catalyst materials in 3-D extremely precisely and faster than before. The application is equally important for science and industry. The researchers published their results today in the journal Science Advances.
Credit: SUTD
Researchers from the Singapore University of Technology and Design (SUTD) have developed novel techniques, known as Automated Fibre Embedding (AFE), to produce complex fibre and silicone composite structures for soft robotics applications. Their work was published in
IEEE Robotics and Automation Letters.
Many soft robot components, including sensors and actuators, utilise embedded continuous fibres within elastomeric substrates to achieve various functionalities. However, manual embedding of continuous fibres in soft substrates is challenging due to the complexities involved in handling precise layering, and retaining of the fibres in the patterned positions which are prone to inconsistencies.
In contrast, the AFE approaches developed by the research team led by Assistant Professor Pablo Valdivia y Alvarado, enabled high precision fabrication of complex layered composites without manual user intervention, thus significantly augmenting the range of fabrication possi
Researchers from the University of Tsukuba synthesized microparticles that exhibit complex fluorescence that has not been previously characterized on a supramolecular level. This fluorescence is attributable to the anisotropic helical arrangement of the polymer chains that comprise the microparticles. Liquid-crystal displays, artificial photosynthesis technologies, and other applications will benefit from the molecular-scale insight provided by these findings.