Engineers apply physics-informed machine learning to solar c

Engineers apply physics-informed machine learning to solar cell production


 E-Mail
IMAGE: Despite the recent advances in the power conversion efficiency of organic solar cells, insights into the processing-driven thermo-mechanical stability of bulk heterojunction active layers are helping to advance the field....
view more 
Credit: Department of Mechanical Engineering and Mechanics/Lehigh University
Today, solar energy provides 2% of U.S. power. However, by 2050, renewables are predicted to be the most used energy source (surpassing petroleum and other liquids, natural gas, and coal) and solar will overtake wind as the leading source of renewable power. To reach that point, and to make solar power more affordable, solar technologies still require a number of breakthroughs. One is the ability to more efficiently transform photons of light from the Sun into useable energy.

Related Keywords

Texas , United States , Joydeep Munshi , Ganesh Balasubramanian , Lehigh University , Texas Advanced Computing Center , Department Of Mechanical Engineering , Wei Chen Northwestern University , Mechanics Lehigh University , Mechanical Engineering , Computational Materials Science , Wei Chen , Northwestern University , Teyu Chien , Cuckoo Search Coarse Grained Molecular Dynamics , Chemical Information , Chemistry Physics Materials Sciences , Industrial Engineering Chemistry , Materials , Polymer Chemistry , Energy Sources , Algorithms Models , Biomedical Environmental Chemical Engineering , Computer Science , Hardware , Software Engineering , டெக்சாஸ் , ஒன்றுபட்டது மாநிலங்களில் , ஜோய்தீப் முன்ஷி , கணேஷ் பாலசுப்ரமணியன் , லேஹி பல்கலைக்கழகம் , துறை ஆஃப் இயந்திர பொறியியல் , இயந்திர பொறியியல் , கணக்கீட்டு பொருட்கள் அறிவியல் , வெய் சென் , வடமேற்கு பல்கலைக்கழகம் , இரசாயன தகவல் , வேதியியல் இயற்பியல் பொருட்கள் அறிவியல் ,

© 2025 Vimarsana