Nanotechnology Now Our NanoNews Digest Sponsors Home > Press > Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter Rice University theoretical physicists (from left) Hsin-Hua Lai, Qimiao Si and Sarah Grefe worked with experimental collaborators at Vienna University of Technology to understand topological features of a nonmagnetic Weyl-Kondo semimetal allowed it to produce a giant Hall effect in the absence of a magnetic field. CREDIT Photo by Jeff Fitlow/Rice University Abstract: In a twist befitting the strange nature of quantum mechanics, physicists have discovered the Hall effect -- a characteristic change in the way electricity is conducted in the presence of a magnetic field -- in a nonmagnetic quantum material to which no magnetic field was applied.