Live Breaking News & Updates on Fog Computing

Stay updated with breaking news from Fog computing. Get real-time updates on events, politics, business, and more. Visit us for reliable news and exclusive interviews.

"Industrial IoT intrusion detection via evolutionary cost-sensitive lea" by Akbar Telikani, Jun Shen et al.

Cyber-attacks and intrusions have become the major obstacles to the adoption of the Industrial Internet of Things (IIoT) in critical industries. Imbalanced data distribution is a common problem in IIoT environments that negatively influence machine learning-based intrusion detection systems. To address this issue, we introduce EvolCostDeep, a hybrid model of stacked auto-encoders (SAE) and convolutional neural networks (CNNs) with a new cost-dependent loss function. The loss function aims to optimize the model’s parameters, where the costs are determined using an evolutionary algorithm. The combination of evolutionary algorithms and deep learning on Big data hinders the scalability of IIoT intrusion detection systems. In this regard, a fog computing-enabled framework, called DeepIDSFog, is designed at the data level, where the master node shares the EvolCostDeep model with worker nodes. In each fog worker node, the EvolCostDeep is parallelized through one task-level and two model-lev ....

Industrial Internet , Class Imbalance , Computational Modeling , Convolutional Neural Networks , Cost Sensitive Learning , Deep Learning , Edge Computing , Evolutionary Algorithms , Fog Computing , Industrial Internet Of Things , Industrial Internet Of Things Iiot , Intrusion Detection ,