Ring stage classification of Babesia microti and Plasmodium

Ring stage classification of Babesia microti and Plasmodium falciparum using optical diffraction 3D tomographic technique | Parasites & Vectors

Babesia is an intraerythrocytic parasite often misdiagnosed as a malaria parasite, leading to inappropriate treatment of the disease especially in co-endemic areas. In recent years, optical diffraction tomography (ODT) has shown great potential in the field of pathogen detection by quantification of three-dimensional (3D) imaging tomograms. The 3D imaging of biological cells is crucial to investigate and provide valuable information about the mechanisms behind the pathophysiology of cells and tissues. The early ring stage of P. falciparum were obtained from stored stock of infected RBCs and of B. microti were obtained from infected patients during diagnosis. The ODT technique was applied to analyze and characterize detailed differences between P. falciparum and B. microti ring stage at the single cell level. Based on 3D quantitative information, accurate measurement was performed of morphological, biochemical, and biophysical parameters. Accurate measurements of morphological parameters indicated that the host cell surface area at the ring stage in B. microti was significantly smaller (140.2 ± 17.1 µm2) than that in P. falciparum (159.0 ± 15.2 µm2), and sphericities showed higher levels in B. microti-parasitized cells (0.66 ± 0.05) than in P. falciparum (0.60 ± 0.04). Based on biochemical parameters, host cell hemoglobin level was significantly higher and membrane fluctuations were respectively more active in P. falciparum-infected cells (30.25 ± 2.96 pg; 141.3 ± 24.68 nm) than in B. microti (27.28 ± 3.52 pg; 110.1 ± 38.83 nm). The result indicates that P. falciparum more actively altered host RBCs than B. microti. Although P. falciparum and B. microti often show confusable characteristics under the microscope, and the actual three-dimensional properties are different. These differences could be used in differential clinical diagnosis of erythrocytes infected with B. microti and P. falciparum.

Related Keywords

San Diego , California , United States , Osaka , Japan , South Korea , Republic Of Korea , , Graphpad Prism Software , Matsunami Glass Ind Ltd , Global Resource Bank , Parasitic Protozoa Pathogens Inha University , Tomocube Inc , Parasitic Protozoa Pathogens , Inha University , Gibco Life Technologies , Matsunami Glass Ind , Graphpad Prism , Graphpad Software ,

© 2025 Vimarsana