vimarsana.com


Archaeologists vs. Computers: A Study Tests Who’s Best at Sifting the Past
When it came to the tedious task of categorizing pottery fragments, a deep-learning model was found to be just as accurate, and far more efficient, as four human experts.
A study focused on the painstaking work of categorizing shards of Tusayan White Ware, a type of painted hand-formed pottery used in northeastern Arizona between 825 and 1300. Credit...Leszek Pawlowicz and Christian Downum/ Northern Arizona University
May 25, 2021, 9:55 a.m. ET
A key piece of an archaeologist’s job involves the tedious process of categorizing shards of pottery into subtypes. Ask archaeologists why they have put a fragment into a particular category and it’s often difficult for them to say what exactly had led them to that conclusion.

Related Keywords

Arizona ,United States ,Tusayan ,France ,Northern Arizona University ,French ,Christian Downum ,Elvis Presley ,Leszek Pawlowicz ,Phillip Isola ,Christian Downum Northern Arizona University ,Northern Arizona ,Archaeological Science ,Tusayan White Ware ,Tusayan White ,Computers And The Internet ,Tech Industry ,Archaeology Anthropology ,Journal Of Archaeological Science ,Tusayan Az ,Ceramics And Pottery ,அரிசோனா ,ஒன்றுபட்டது மாநிலங்களில் ,தூசயன் ,பிரான்ஸ் ,வடக்கு அரிசோனா பல்கலைக்கழகம் ,பிரஞ்சு ,எல்விஸ் ப்ரெஸ்லீ ,பிலிப் ஐசோலா ,வடக்கு அரிசோனா ,தொல்பொருள் அறிவியல் ,கணினிகள் மற்றும் தி இணையதளம் ,தொழில்நுட்பம் தொழில் ,தொல்பொருள் மானுடவியல் ,சிஇஆர்ஏஎம்ஐசிஎஸ் மற்றும் பாடரீ ,

© 2025 Vimarsana

vimarsana.com © 2020. All Rights Reserved.