Additional File News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Stay updated with breaking news from Additional file. Get real-time updates on events, politics, business, and more. Visit us for reliable news and exclusive interviews.

Top News In Additional File Today - Breaking & Trending Today

Cell envelope and stress-responsive pathways underlie an evolved oleaginous Rhodotorula toruloides strain multi-stress tolerance | Biotechnology for Biofuels and Bioproducts

The red oleaginous yeast Rhodotorula toruloides is a promising cell factory to produce microbial oils and carotenoids from lignocellulosic hydrolysates (LCH). A multi-stress tolerant strain towards four major inhibitory compounds present in LCH and methanol, was derived in our laboratory from strain IST536 (PYCC 5615) through adaptive laboratory evolution (ALE) under methanol and high glycerol selective pressure. Comparative genomic analysis suggested the reduction of the original strain ploidy from triploid to diploid, the occurrence of 21,489 mutations, and 242 genes displaying copy number variants in the evolved strain. Transcriptomic analysis identified 634 genes with altered transcript levels (465 up, 178 down) in the multi-stress tolerant strain. Genes associated with cell surface biogenesis, integrity, and remodelling and involved in stress-responsive pathways exhibit the most substantial alterations at the genome and transcriptome levels. Guided by the suggested stress response ....

Atpase Neo , Genome Institute , Additional File , Supplementary Table , Differentially Expressed Genes , Joint Genome Institute , Eukaryotic Orthologous Groups , Functional Enrichment Analysis ,

Integrated transcriptomic and metabolomic analysis reveals the effects of polyploidization on the lignin content and metabolic pathway in Eucalyptus | Biotechnology for Biofuels and Bioproducts

Lignin is a major restriction factor for the industrial production of biomass resources, such as pulp and bioenergy. Eucalyptus is one of the most important sources of pulp and bioenergy. After polyploidization, the lignin content of forest trees is generally reduced, which is considered a beneficial genetic improvement. However, the differences in the lignin content between triploid and diploid Eucalyptus and the underlying regulatory mechanism are still unclear. We conducted a comprehensive analysis at the phenotypic, transcriptional and metabolite levels between Eucalyptus urophylla triploids and diploids to reveal the effects of polyploidization on the lignin content and lignin metabolic pathway. The results showed that the lignin content of Eucalyptus urophylla triploid stems was significantly lower than that of diploids. Lignin-related metabolites were differentially accumulated between triploids and diploids, among which coniferaldehyde, p-coumaryl alcohol, sinapaldehyde and con ....

Additional File , Kyoto Encyclopedia ,

Quantification and mitigation of byproduct formation by low-glycerol-producing Saccharomyces cerevisiae strains containing Calvin-cycle enzymes | Biotechnology for Biofuels and Bioproducts

Anaerobic Saccharomyces cerevisiae cultures require glycerol formation to re-oxidize NADH formed in biosynthetic processes. Introduction of the Calvin-cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has been shown to couple re-oxidation of biosynthetic NADH to ethanol production and improve ethanol yield on sugar in fast-growing batch cultures. Since growth rates in industrial ethanol production processes are not constant, performance of engineered strains was studied in slow-growing cultures. In slow-growing anaerobic chemostat cultures (D = 0.05 h−1), an engineered PRK/RuBisCO strain produced 80-fold more acetaldehyde and 30-fold more acetate than a reference strain. This observation suggested an imbalance between in vivo activities of PRK/RuBisCO and formation of NADH in biosynthesis. Lowering the copy number of the RuBisCO-encoding cbbm expression cassette from 15 to 2 reduced acetaldehyde and acetate ....

Additional File ,

Biochemical and structural characterisation of a family GH5 cellulase from endosymbiont of shipworm P. megotara | Biotechnology for Biofuels and Bioproducts

Cellulases play a key role in the enzymatic conversion of plant cell-wall polysaccharides into simple and economically relevant sugars. Thus, the discovery of novel cellulases from exotic biological niches is of great interest as they may present properties that are valuable in the biorefining of lignocellulosic biomass. We have characterized a glycoside hydrolase 5 (GH5) domain of a bi-catalytic GH5-GH6 multi-domain enzyme from the unusual gill endosymbiont Teredinibacter waterburyi of the wood-digesting shipworm Psiloteredo megotara. The catalytic GH5 domain, was cloned and recombinantly produced with or without a C-terminal family 10 carbohydrate-binding module (CBM). Both variants showed hydrolytic endo-activity on soluble substrates such as β-glucan, carboxymethylcellulose and konjac glucomannan, respectively. However, low activity was observed towards the crystalline form of cellulose. Interestingly, when co-incubated with a cellulose-acti ....

Additional File ,