vimarsana.com


Dynamics of COVID-19 under social distancing measures are driven by transmission network structure
Anjalika Nande,
Affiliation
Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America
Affiliation
Program for Evolutionary Dynamics, Harvard University, Cambridge, Massachusetts, United States of America

Justin Sheen,
Roles
Conceptualization,
Formal analysis,
Writing – review & editing
Affiliation
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Michael Z. Levy,
Roles
Conceptualization,
Funding acquisition,
Supervision,
Writing – original draft,
Writing – review & editing
Affiliation
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
Anjalika Nande, 
Abstract
In the absence of pharmaceutical interventions, social distancing is being used worldwide to curb the spread of COVID-19. The impact of these measures has been inconsistent, with some regions rapidly nearing disease elimination and others seeing delayed peaks or nearly flat epidemic curves. Here we build a stochastic epidemic model to examine the effects of COVID-19 clinical progression and transmission network structure on the outcomes of social distancing interventions. Our simulations show that long delays between the adoption of control measures and observed declines in cases, hospitalizations, and deaths occur in many scenarios. We find that the strength of within-household transmission is a critical determinant of success, governing the timing and size of the epidemic peak, the rate of decline, individual risks of infection, and the success of partial relaxation measures. The structure of residual external connections, driven by workforce participation and essential businesses, interacts to determine outcomes. We suggest limited conditions under which the formation of household “bubbles” can be safe. These findings can improve future predictions of the timescale and efficacy of interventions needed to control second waves of COVID-19 as well as other similar outbreaks, and highlight the need for better quantification and control of household transmission.

Related Keywords

Wuhan ,Hubei ,China ,United States ,New York ,Hong Kong ,Madrid ,Spain ,Italy ,California ,Inande ,Galicia ,Guangdong ,France ,French ,Chinese ,Alex Perkins ,Los Angeles ,Modeling Team ,University Of Notre Dame ,Imperial College ,Community Of Madrid ,Us National Institutes Of Health ,Notre Dame ,Creative Commons Attribution License ,New York City ,சீனா ,ஒன்றுபட்டது மாநிலங்களில் ,புதியது யார்க் ,ஹாங் காங் ,மாட்ரிட் ,ஸ்பெயின் ,இத்தாலி ,கலிஃபோர்னியா ,நந்தே ,கலீசியா ,குவாங்டாங் ,பிரான்ஸ் ,பிரஞ்சு ,சீன ,அலெக்ஸ் பெர்கின்ஸ் ,லாஸ் ஏஞ்சல்ஸ் ,மாடலிங் அணி ,பல்கலைக்கழகம் ஆஃப் நோட்ரே டேம் ,ஏகாதிபத்தியம் கல்லூரி ,சமூக ஆஃப் மாட்ரிட் ,எங்களுக்கு தேசிய நிறுவனங்கள் ஆஃப் ஆரோக்கியம் ,நோட்ரே டேம் ,புதியது யார்க் நகரம் ,

© 2025 Vimarsana

vimarsana.com © 2020. All Rights Reserved.